I B.Tech - II Semester – Regular Examinations - JULY 2024

CHEMISTRY (Common for IT, AIML, DS)

Duration: 3 hours	Max. Marks: 70
Notes 1 This question nonen contains two Darts A and D	

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

····· P ···· ···	C	······································
BL – Blooms Level		CO – Course Outcome

		BL	CO
1.a)	What is the purpose of de-Broglie's relationship?	L2	CO1
1.b)	State the conditions for linear combination of atomic orbitals.	L2	CO1
1.c)	Mention the reasons for the unique behavior of nano materials.	L2	CO2
1.d)	List out the general applications of carbon nano tubes.	L2	CO2
1.e)	Differentiate between conductance and conductivity.	L3	CO4
1.f)	What is the potential of a half cell consisting of copper electrode in 0.015 M CuSO ₄ solution at 25 °C , $E^{\circ}_{Cu}^{2+}/Cu = 0.34$ V.	L3	CO2
1.g)	Define the terms monomer, polymer and polymerization.	L2	CO5

PART – A

1.h)	Give the monomers used in the synthesis of Nylon-6, 6.	L2	CO5
	Name two common types of vibrations that are detected in IR spectroscopy.		CO3
1.j)	What is the basic principle involved in chromatography?	L2	CO3

PART – B

		-			
			BL	СО	Max.
			DL		Marks
		UNIT-I			
2	a)	Derive the Schrodinger wave equation	L2	CO1	5 M
		and give its applications.			
	b)	Discuss the magnetic property of CO	L3	CO2	5 M
		molecule with the help of neat molecular			
		orbital energy level diagram.			
		OR			
3	a)	Show that Heisenberg's uncertainty	L3	CO2	5 M
		principle is a natural consequence of			
		wave nature associated with moving			
		material particles.			
	b)	Describe the stability of butadine using pi	L3	CO2	5 M
		molecular orbital energy level diagram.			
		UNIT-II			
4	a)	What are supercapacitors? Discuss the	L4	CO4	5 M
		classification and applications of			
		supercapacitors.			
L	1	1	1		1

	b)	Differentiate between intrinsic and	L3	CO2	5 M
		extrinsic semiconductors.			
I		OR	I	11	
5	a)	Compare and contrast the properties of	L4	CO4	5 M
		fullerenes with those of graphenes.			
	b)	Discuss the structure of high temperature	L2	CO4	5 M
		super conductors with the help of neat			
		diagram and mention its applications.			
		UNIT-III			
6	a)	How do you differentiate between	L3	CO4	5 M
U	<i>a)</i>	primary and secondary batteries? Explain		04	JIVI
		the construction and working of $Zn - air$			
		battery.			
	b)	Calculate the EMF of the following cell	L3	CO2	5 M
	0)	at 25 [°] C.	L3		5 111
		$Cu(s)/Cu^{2+}(0.001M)//Ag^{+}(0.01 M)/Ag(s)$			
		$E^{\circ}(Cu^{2+}/Cu) = -0.34V, E^{\circ}(Ag^{+}/Ag) = 0.80V$			
		OR			
7	a)	Derive Nernst equation. Mention its	L2	CO4	5 M
		application in determination of pH of			
		unknown acid.			
	b)	Make the use of neat diagram to explain	L3	CO2	5 M
		the construction, working and			
		applications of polymer electrolyte			
		membrane furl cell.			

		UNIT-IV			
8	a)	Differentiate between thermoplasts and	L2	CO5	5 M
		thermosets.			
	b)	Write a note on synthesis of Poly Lactic	L2	CO5	5 M
		acid and mention its properties and			
		applications.			
		OR			
9	a)	What are conducting polymers? Discuss	L3	CO3	5 M
		the mechanism of conduction in poly			
		aniline.			
	b)	Outline the synthesis of Bakelite.	L3	CO5	5 M
		Mention its properties and applications.			
		UNIT-V			
10	a)	List out the characteristics of	L2	CO2	5 M
	•	electromagnetic spectrum.			
	b)	Describe the principle and	L3	CO5	5 M
		instrumentation of UV-visible spectro			
		scopy with the help of neat diagram.			
11	\ \	OR	T 4	COL	5.) (
11	a)	How does the Beer-Lambert law account	L4	CO5	5 M
		for the exponential decrease in light			
		intensity with increasing concentration of			
	1-)	absorbing species?	1.2	COF	5 1 4
	b)	Explain how IR spectroscopy is used to	L3	CO5	5 M
		identify functional groups in organic			
		molecules.			